
E-Government Services Migration to the Public Cloud:
Experiments and Technical Findings

Taavi Kotka1, Bruce Johnson2, Tomaz Cebul2, Luka Lovosevic2, and Innar Liiv1(✉)

1 Department of Informatics, Tallinn University of Technology, 12618 Tallinn, Estonia
taavi.kotka@gmail.com, innar.liiv@ttu.ee

2 Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98103, USA
{bjohnson,tomaz.cebul,luka.lovosevic}@microsoft.com

Abstract. E-government services migration to the public cloud presents novel
policy and technical challenges. This paper explores possible technical obstacles
one should anticipate when migrating e-government services to cloud. Technical
experiment design is presented, implementation process and the steps taken are
elaborated; performance experiments are presented together with findings that
were considered significant in the process. Main findings of migration experi‐
ments are organized into six groups: security, identity and data architecture find‐
ings; operations architecture findings; application architecture findings; compute
architecture findings; storage architecture findings; and network architecture
findings.

1 Introduction

Current research project sought to understand how cloud based application packaging
is able to help overcome the environmental dependencies that would have previously
prevented the on-premises applications from being moved to either a different physical
or online location.

Public cloud platforms provide the first real steps towards abstraction of the physical
computing environment, which includes servers, networking equipment, and storage
systems, through the use of different cloud application packaging types. Cloud-based
application packaging can take the form of specialized installers, containers, virtual
disks, or entire virtual machines. Virtual machine and virtual disks can be used as a type
of cloud application packaging to virtualize physical host and hardware. They may also
be used to capture system specific settings including device drivers, network interfaces
and Internet Protocol (IP) addresses, routing paths, DNS settings for both hosts and
subdomains, cryptographic keys, user and machine credentials as well as many other
application specific settings. In the context of this project it was also proposed that the
use of cloud application packaging would enable consolidation and portability of appli‐
cations, as well as make the operations, maintenance, and application development
simpler tasks by mitigating some of the more disruptive elements in application lifecycle
management.

Furthermore, it was assumed a major benefit of a Virtual Data Embassy Solution [1]
would be a consistent (seamless) online environment based on the latest versions of
compatible hardware and software. The Solution is expected to eliminate the variability

© Springer International Publishing Switzerland 2016
A. Kő and E. Francesconi (Eds.): EGOVIS 2016, LNCS 9831, pp. 62–76, 2016.
DOI: 10.1007/978-3-319-44159-7_5

of stand-alone hardware and software environments, which have been developed (and
upgraded) at different intervals over time. For example, when each application is free
to dictate all layers of the software and hardware stack, there is a real risk that it can be
extremely complex to move that application to a new physical, e.g. physical embassy,
or cloud environment, e.g. Virtual Data Embassy. The research project looked at how,
when using a public cloud platform, significant layers of the application stack could be
consolidated, standardized, and scaled in ways that make it possible to move and operate
all applications in a more standardized and repeatable fashion.

Finally, it was important to show how the use of a public cloud platform could help
optimize for different sets of skill and operational models required by administrators of
e-government services, building a critical mass of knowledge overall. To this end, the
research project team sought to show how a basic IaaS platform could support two
different applications using common operations up to the level of the specific application
requirements. While it was assumed that the use of an IaaS platform would not
completely eliminate the need for subject matter experts, it was found to reduce the
amount of support needed. Moreover, software automation allows resources, previously
allocated to support on premise applications, to be redeployed in other areas.

Following sections explore how the Virtual Data Embassy could be implemented
within the context of the current Estonian government ICT architecture [1] (see [2] for
discussion about policy and legal aspects). The implementation process and the steps
taken are elaborated, followed by a section that compares and contrasts the results of
the testing that was conducted, before ending with findings that were considered signif‐
icant in the process.

2 Technical Experiment Design

At the onset of the research project a number of steps needed to be taken, from which a
number of implications for the project as a whole, were derived. While not part of this
document, the process of selecting from the different cloud options available and
selecting the government services to be migrated was critical to the success of the
research. To this end comprehensive risk assessments were conducted, which allowed
the selection of the most appropriate services, as well as highlighting a number of
opportunities for improvement overall.

Building on this, consideration was given to how to best migrate the services to the
cloud. The challenges encountered in this process, as well as solutions used, are
presented in the section below. The next section talks about how the different starting
architectures across the two project workstreams were worked around in order to ensure
that in the cloud operational efficiencies were achieved, e.g. common file storage,
common backup procedures, and common load balancing technologies. Lastly, an over‐
view of the testing conducted, once migration had been completed, is presented.
Comparison of different cloud platforms was not in the focus of this project.

E-Government Services Migration to the Public Cloud 63

2.1 Migration to the Public Cloud

The migration of existing e-government services to a public cloud platform, and the
feasibility of doing so has recently gained substantial interest and attention [3–5].
Related practical experiments represented a major part of the research project. If it had
emerged that the migration process was too complex, costly, time consuming or that it
required significant architectural changes, doubts would have been cast on the overall
viability of the Virtual Data Embassy Solution. An assessment was therefore made at
the beginning of the project to understand it would be feasible and whether any signif‐
icant changes would be required.

Two main approaches were considered for migrating the selected government serv‐
ices, although it has to be pointed out that these cannot be seen as binary either/or options.
It is expected that in other similar situations a combination of these two would be used,
as one is a better fit for newer operating system migration and the other for more complex
applications:

• Virtualize the application and perform an “in-place” base operating system
upgrade: This approach consists of three distinct steps: (1) any physical servers are
virtualized and any existing virtual servers cloned; (2) the operating system is
upgraded to the latest version in-place; and, (3) all is uploaded onto the cloud plat‐
form. Typically, this approach is beneficial if there is a need to maintain a direct clone
of the entire operating system environment on-premises. However, this approach
requires significantly more time and bandwidth since the images to be uploaded can
be large, e.g. over 50 GB.

• Deploy directly onto the cloud platform: This approach sees the base operating
system provisioned directly by the cloud platform before any application compo‐
nents, such as databases or web servers, are deployed onto the operating system and
the application content and data is synchronized. This approach has the benefit of
requiring only the core application and its data to be uploaded to the cloud which
frequently represents a much smaller data footprint.

For the migration to be possible, it had to be established whether the Microsoft cloud
platform supported the operating systems currently used by the government services and
their applications. As highlighted in the research project description, the two government
services use FreeBSD and CentOS, which are not Microsoft products. Importantly, the
cloud platform selected supports a number of non-Microsoft products, including UNIX
& Linux operating systems, as well as FreeBSD and CentOS. However, it typically only
supports the latest three versions of an operating system. This means that an operating
system upgrade was required prior to migration, as the versions used by the selected
applications were not supported. Furthermore, on-premises virtual machines can also
be transferred onto the Microsoft’s cloud platform directly, as it supports the open
industry-standard virtual hard disk (VHD) format [6]. This is used by a number of on-
premises hypervisors.

Given the base operating system upgrades required by both application workstreams,
the second option, “deploy directly in the cloud”, was selected as being quicker and less
risky. One reason for this choice was that the software installation media for the

64 T. Kotka et al.

application components was readily available, making it straightforward and fast to re-
install them on the public cloud operating system. The second reason was that this option
meant the content and data could be synchronized directly with the on-premises master,
again with speed and ease. Finally, and most critically, the versions of FreeBSD and
CentOS used originally did not natively support an in-place operating systems upgrade.
As a result, the in-place upgrade, core to the first option, would have to be performed
manually, introducing a higher level of risk.

2.2 Target Architecture for Public Cloud

While the two project workstreams had different starting architectures, the research
project aimed to deploy the applications in a similar deployment architecture to help
achieve operational efficiencies, such as common file storage, backup procedures, and
load balancing technologies. Target deployment architectures were utilized as presented
in following subsections.

2.2.1 Workstream #1 – Presidentee.cloudapp.net
Presidentee.cloudapp.net was a Microsoft cloud application version of www.presi‐
dent.ee site. The cloud service “presidentee.cloudapp.net” represented six virtual
machine instances behind a load balancer configured in an availability set. The cloud
service had been configured to use auto-scaling with minimum of two instances to a
maximum of six instances. It is important to point out that two instances represent a
minimum required to be able to achieve the level of availability needed. The overall
design is depicted in Fig. 1 below.

Fig. 1. Presidentee.cloudapp.net architecture

The cloud service had HTTP protocol on TCP port 80 published on the internet. The
load balancer ensures that the network traffic is equally divided between all running
virtual machine instances. Moreover, when a new virtual machine instance starts or

E-Government Services Migration to the Public Cloud 65

http://www.president.ee
http://www.president.ee

stops, it is automatically included in the load balancer pool. As mentioned above, the
cloud service was serviced by up to six virtual machines kept on geographically repli‐
cated storage and configured as an availability set.

All virtual machines used were sized Standard A1 (1 core, 1.75 GB memory), had
a fixed IP reservation and a single disk sized 50 GB. The IP address was reserved in the
WS1-NET-Azure Subnet 1 IP address segment. As a result, the cloud platform fabric
always assigned the same IP address to the virtual machine. Finally, the content was
synchronized from on-premises publishing servers using the custom rsync protocol over
the Secure Shell (SSH) to ws1president00 server and, in the second stage, from ws1pres‐
ident00 to ws1president(01-06).

2.2.2 Workstream #1 – Riigiteataja.cloudapp.net
Riigiteataja.cloudapp.net was the portable version of www.riigiteataja.ee site running
on the Microsoft cloud platform. The cloud service “riigiteataja.cloudapp.net” repre‐
sented four virtual machine instances behind a load balancer configured in an availability
set. The cloud service had been configured to use auto-scaling with minimum of two
instances to a maximum of four instances. It is important to point out that two instances
represent a minimum required to be able to achieve the level of availability needed. The
overall design is depicted in Fig. 2 below:

Fig. 2. Riigiteataja.cloudapp.net architecture

The cloud service had both HTTP and secure HTTPS protocol on TCP port 80 and
443 published on the Internet. The load balancer ensures that network traffic is equally
divided between all running virtual machine instances. When a new virtual machine
instance starts or stops, it is automatically included in the load balancer pool. As

66 T. Kotka et al.

http://www.riigiteataja.ee

mentioned above, the cloud service was serviced by up to four virtual machines stored
on geographically replicated storage and configured as an availability set.

All virtual machines used were sized Standard A5 (2 cores, 14 GB memory), had a
fixed IP reservation and two disk drives (OS disk sized 30 GB, data disk sized 200 GB).
The IP address was reserved in the WS2-NET-Azure Subnet 1 IP address segment. As
a result, the cloud platform fabric always assigned the same IP address to the virtual
machine. For synchronization purposes, a site to site Virtual Private Network (VPN)
was also created between the WS2-NET-Azure virtual network and the network of the
Ministry of Justice. Moreover, the cloud service riigiteataja.cloudapp.net was also
assigned a reserved public IP address to make external DNS handling easier. Finally,
the content was synchronized from on-premises publishing servers using custom rsync
protocol over SSH to ws2ertport00 server and in the second stage from ws2ertport00 to
ws2ertport(01-04).

2.3 Performance Testing Methodology

Once the migration of the two applications was completed, testing activities began across
two dimensions: performance and demand. Two types of performance tests were used:
load and stress testing. Load testing was used to understand the behavior of the system
under a range of normal load conditions, and to compare the transactional response time
with the on-premises solution. Stress testing, on the other hand, was used to determine
the solution’s robustness under peak load and to prove it would automatically scale-out
elastically under sustained peak load situations.

Load testing involves simulated client and end user activity that could take place, if
a large number of human end users were attempting to access the services at one time.
The patterns and usage scenarios are designed to ensure that the correct activities are
available to users. For example, if one million users were to go to the president’s website
due to an external event, this would be considered a load test scenario. The users are not
trying to do unusual but their sheer numbers could impact performance. Conversely, the
stress testing scenarios tend to simulate client and end user behavior designed to break
or cause problems for the site, e.g. where multiple users try and overload it by playing
videos to attempt to consume all the resources available, thus preventing the site from
functioning. The load and stress testing were also repeated under two demand scenarios.
The first was a normal demand scenario, which consisted of replicating the existing
normal usage conditions whilst catering to organic expanded demand, as might occur if
additional users were to utilize the e-government service. The second was a malicious
demand scenario, which might occur if Estonian e-government services were under a
cyber-attack intended to render the services incapacitated or unavailable. Section 3
covers the results of the testing.

2.3.1 Normal Demand Usage Scenario
The normal demand usage scenario was to demonstrate the cloud platform’s ability to
dynamically scale up the number of application servers, storage systems, and route traffic
appropriate to the end user demand. For example, if a text based and media content

E-Government Services Migration to the Public Cloud 67

update to the President.ee website were to occur, load testing should show that the cloud
platform has supported increased demand for the media files and web server content. In
an ideal situation, the cloud platform would dynamically scale up compute, storage, and
network resources using the cloud platform load balancer to deliver the content to users
via the closest Virtual Data Embassy, irrespective of where the data center is based.

Under normal load testing, it was expected that the cloud platform could demonstrate
automatic scaling, eliminating the need for procurement, setup, or redeployment of
applications by the administrator. The normal load testing scenario was also designed
to show the reliability of the cloud platform under normal failure events, such as a (non-
malicious) application crash due to a software bug in either the application or underlying
guest operating system. If such an instance were to occur, the cloud platform should
automatically use a replacement application instance with no staff involvement.

2.3.2 Malicious Demand Usage Scenario
The malicious load and stress testing was to demonstrate that the cloud platform is
resilient to malicious attempts to consume compute, storage, or network resources,
which would prevent a normal end user from accessing the application or monument
websites within a reasonable response time. Under malicious load and stress testing, the
cloud platform was expected to implement parameterized automatic scaling, which
would eliminate the need for operator involvement or the procurement, setup, or rede‐
ployment of applications by the administrator.

The simulated malicious load testing scenario was designed to demonstrate the reli‐
ability of the cloud platform against malicious attacks that would attempt to exploit
known (e.g. Heartbleed SSL) or unknown (e.g. zero day attacks) software bugs in either
the application or underlying guest operating system. In a malicious failure scenario
under load, the cloud platform should automatically use a replacement application
instance with no operations staff involvement and begin to report malicious usage to key
staff people for examination of possible mitigation techniques beyond simple load
balancing.

3 Experiments and Performance

In this section, the performance results are outlined, comparing the applications’
behavior in their original on-premises environments and the target cloud environment.
All of the performance, load and stress test cases were built using Microsoft Visual
Studio® 2013 and Visual Studio Online and run on the Azure™ cloud platform. The
results were exported and analyzed by the testing team. Microsoft Azure™ was used to
initialize a large number of distributed test agents that can successfully simulate a
website load under different circumstances, such as different bandwidth, browser types,
click pattern, etc. Figure 3 depicts the load testing approach and architecture.

68 T. Kotka et al.

Fig. 3. Load testing architecture

3.1 Workstation #1 Load Test Results

The load tests were performed on both the on-premises and cloud versions of Presi‐
dent.ee. Overall, the website performed as expected and the tests showed that the
response time was in the proposed limit (goal) of 5 s. The tests we conducted that are
particularly worth highlighting were:

• #1.1 HomePageLoadTest: Auto-scaling test, verifying that website scales up auto‐
matically under heavy load;

• #1.2 SearchResultsLoadTest: Basic performance test measuring load time of home‐
page and search results from the website;

• #1.3 MediaImageLoadTest: Media performance test measuring load time of random
image and random video from the website;

• #1.4 TestMixLoadTest: Mixed performance test (also known as a mixed feature test),
simulating a typical scenario in which the website is under heavy load in different
areas: e.g. 70 % of the users on the home page, 16 % on the search page and 12 % on
image content and 2 % on video content.

Table 1 represents average response times for different load test scenarios. Response
times are listed for both cloud and on-premises version of President.ee.

E-Government Services Migration to the Public Cloud 69

Table 1. Overview of key tests conducted in Workstream #1

Load
test

of users Duration of
test

Azure avg.
response
time

On-premise avg.
response time

Comments

#1.1 1000 users 30 min 3.14 s 3.38 s Auto-scaling enabled,
starting with 1
virtual machine
instance

#1.2 1000 users 30 min 2.90 s 2.93 s
#1.3 1000 users 30 min 0.20 s not tested
#1.4 500 users 30 min 3.19 s 4.08 s Mixed tests will all

features tested

Azure Workstream #1 Load Test Results: Figure 4 shows typical load test results,
when run from Visual Studio® and deployed to Visual Studio Online. This is a sample
load test for the image content (Load test #1.3) for 500 concurrent users during a period
of 30 min. The test gave us the average page response time of around 0.2 s. It is important
to note that the first few spikes in Fig. 4 were managed by the auto-scaling feature. This
feature was demonstrated during the tests under heavy load by starting an additional
virtual machine instance to offload the traffic (Fig. 5).

Fig. 4. Azure™ version of MediaImageLoad (#1.3) test results

On-Premises Workstream #1 Load Test Results: The on-premises version was
running on the following hardware: CPU: Intel Xeon X3350 and RAM: 8 GB. The
following diagram shows typical load test results when run from Visual Studio® (and
deployed to Visual Studio Online). This is a sample load test for the image content
(HomePageLoadTest, #1.1) for 500 concurrent users during 30 min. The first couple of
spikes (Fig. 6) for the average page response time could be explained by “cold boot”;
when the server/database is warmed-up, the page response time gets normalized.

70 T. Kotka et al.

Fig. 6. Load test results on premises, Workstream #1

3.2 Workstation #2 Load Test Results

Tests were performed against a full version of the website, which had read, write, and
modify functionalities enabled. The website ran both in the cloud and on-premises. As
with the first workstream, the website performed as expected and the tests showed that
the response time was in the proposed limit (goal) of 5 s. The tests conducted that are
particularly worth highlighting were:

• #2.1 HomePageLoadTest: Basic performance test, measuring load time of home‐
page;

• #2.2 SearchResultsLoadTest: Measuring load time of search results from the website
• #2.3 LawDetailsLoadTest: Measuring load time of law/act details page

Fig. 5. Azure™ Monitoring Dashboard demonstrates auto-scaling features

E-Government Services Migration to the Public Cloud 71

• #2.4 TestMixLoadTest: Mixed performance test, simulating a typical scenario in
which the website is under heavy load in different areas, e.g. 50 % of the users on the
home page, 30 % on the search page and 20 % on law/act details page (Table 2).

Table 2. Overview of key tests conducted in Workstream #2

Load
test

of users Duration of
test

Azure avg.
response time

On-premise avg.
response time

#2.1 1000 users 30 min 3.21 s 3.01 s
#2.2 1000 users 30 min 156.74 s 90.64 s
#2.3 1000 users 30 min 1.25 s 3.91 s
#2.4 500 users 30 min 72.49 s 25.28 s

Azure Workstream #2 Full Version Load Test Results: The following diagram
shows a sample of load test results when run from Visual Studio (and deployed to Visual
Studio Online). This is the load test for the search results page (part of the basic perform‐
ance test for workstream #2, #2.2) for 500 concurrent users during 30 min (Fig. 7).

Fig. 7. Sample load test results, Azure™ workstream #2

It is worth noting that during the performance/load testing, the auto-scaling feature
for the full version of workstream #2 government services on the cloud platform was
not enabled. The following virtual machine sizes formed the basis of the solution:
Application server (1 A5 virtual machine instance), Database server (1 A5 virtual
machine instance).

On-Premises Workstream #2 Full Version Load Test Results: The following
diagram (Fig. 8) shows a sample of load test results when run from Visual Studio (and
deployed to Visual Studio Online). This is the load test for the search results page (part
of the basic performance test for workstream #2, #2.2) for 500 concurrent users during
30 min. The following hardware was used for the on-premises solution: the application
server: 4vCPU, 12 GB RAM and the database server: 4vCPU, 8 GB RAM.

72 T. Kotka et al.

4 Findings

Why is this paper a unique contribution to e-Government scientific community? Is this
(not) yet another service migration to cloud? What are those unique aspects to e-
Government services? Estonia must be able to continue to function as a government,
and as a people, even in the direst of scenarios, including the loss of its territory. Since
Estonia does not have paper backups of core registries, its demands for data protection,
integrity, security, and privacy are unparalleled. Both experiments were conducted
considering those worst scenarios, observations and findings were identified. This
section presents main findings of migration experiments. They are organized into six
main groups, where each group and finding would deserve a longer explanation and
further discussion. However, authors see this as a guiding framework to spark academic
discussion and comparisons between different migration projects. Technical reports,
which describe each finding on a technical level in more detail are available to all
researchers upon request.

4.1 Security, Identity and Data Architecture Findings

1. Data architecture and data security policies are essential for data integrity
2. A holistic data governance and security approach is required to facilitate migration

to the cloud
3. Designing systems for ‘separation of duties’ and ‘least privilege’ is vital to main‐

taining security
4. Role Based Access Control (RBAC) and claims-based security increases overall

security
5. Overall system control increases if operating system root credentials are restricted
6. Isolation of user roles and accounts between environments prevents accidental

changes
7. Isolating service accounts between application instances reduces security risk.

4.2 Operations Architecture Findings

1. Documented disaster recovery and cloud fail-over procedures ease pressure on teams

Fig. 8. Sample load test results, on-premises, workstream #2

E-Government Services Migration to the Public Cloud 73

2. Expected load characteristics and required capacity plans needed to be able to scale
the cloud

3. Standardization across e-government services can ease operational management
4. Operation support roles benefit from use of Role Based Access Control.

4.3 Application Architecture Findings

1. A DevOps approach [7] to application building ensures a quicker response to threats
2. Understanding security threats for all applications is central to successful mitigation
3. A modern design, which allows for portability, gives the government more choice
4. Public cloud can protect against DDoS attacks better than on-premises systems.

4.4 Compute Architecture Findings

1. Standardized sizing of physical servers and virtual machines helps migration
2. Master operating system images can drive standardization through virtual machine

templates
3. Complexity reduced if distinct functions are separated onto different compute nodes
4. Isolated content roles minimize risk
5. Cloud design patterns using small scale-out units are preferable
6. Auto-scaling configuration requires further development
7. A server patch management strategy can help improve security.

4.5 Storage Architecture Findings

1. Standard file system disk structure for database, log, and application data improves
performance

2. Any modification of the overall host, disk, and file system layout is dependent on
boundaries

3. The primary operating system disks cannot be used for application or service storage
needs

4. Data files can be shared between application servers
5. Data replication between on-premises and cloud systems is straightforward
6. Cloud storage architecture can enhance existing application storage
7. Regular updates of cloud virtual machine operating systems needed for wider use

of Windows Azure Storage functionality.

4.6 Network Architecture Findings

1. Statically configured internal DNS naming conventions are required in the cloud
environment

2. Ownership, configuration and maintenance of the DNS Start of Authority (SOA) is
vital

3. Statically configured IP public and private addresses need to be carefully handled

74 T. Kotka et al.

4. Virtual network, IP address and name resolution function differently in the cloud
5. Applications need to be able to use the load balancer provided by the cloud platform.

5 Conclusions

The research project confirmed that both the Estonian President’s website and the State
Gazette website were able to successfully migrate to and operate in the public cloud for
the duration of the project. Moreover, while certain issues were encountered, it also
became clear that cloud computing can be leveraged to enhance the performance and
resilience of the government services, given cloud capabilities, such as DDoS protection
and auto-scaling. Indeed, virtual machines in the cloud environment can be hosted and
stored in numerous locations, which may be situated in different countries, or even
continents. This is necessary for Estonia’s digital continuity [1] requirement – the func‐
tioning of the state in any situation or emergency.

It also emerged that while most applications, originally designed for on-premises
use, can be moved to the cloud “as is”, this might result in difficulties with scaling and
achieving full functionality. For e-government applications to truly benefit from a
migration to a cloud platform, they should be thoroughly evaluated, e.g. undergo a risk
assessment, to ensure that the applications meet the current threat landscape and have a
defined switching procedure and procedures for running services in cloud in place.

A critical challenge identified was that many existing information systems are poorly
documented. Detailed documentation on information system architecture and function‐
ality specifications, interfacing, or customizations is often missing and frequently only
a small number of experts understand the workings of the system. This could lead to
gaps in digital continuity, in particular when quick reactions are required and these
experts are not available.

A very specific lesson that emerged was the need for the government to be able to
request changes regarding the operation of DNS zones and records, which is critical to
usage of the DNS by end users. The DNS system and certificate authority system will
play a very significant role in establishing citizens’ trust and their ability to get to the
appropriate services during a crisis or cyber-attack. Presently, this is currently not the
case, and the DNS and critical name resolution systems rely heavily on manual updates
by a collection of civil servants and private companies.

Overall, the project demonstrated that from a technology perspective, the Virtual
Data Embassy Solution is feasible, as only limited architectural changes would be
required.

Acknowledgments. This paper is based on a section of an unpublished manuscript of a research
project on “Public Cloud Usage for Government” and unpublished materials of doctoral
dissertation of Taavi Kotka, authors did not receive payment for this publication. Authors wish
to thank Mikk Lellsaar, Raivo Oravas, Rome Mitt, Ivo Vellend, Taavi Meos, Ardo Birk.

E-Government Services Migration to the Public Cloud 75

References

1. Kotka, T., Liiv, I.: Concept of Estonian Government cloud and data embassies. In: Kö, A.,
Francesconi, E. (eds.) EGOVIS 2015. LNCS, vol. 9265, pp. 149–162. Springer, Heidelberg
(2015)

2. Kotka, T., Kask, L., Raudsepp, K., Storch, T., Radloff, R., Liiv, I.: Policy and legal environment
analysis for e-Government services migration to the public cloud. In: Proceedings of the 9th
International Conference ICEGOV 2016, Montevideo, Uruguay, 1–3 March 2016, pp. 103–
108. ACM Press (2016)

3. Cellary, W., Strykowski, S.: e-Government based on cloud computing and service-oriented
architecture. In: Proceedings of the 3rd International Conference ICEGOV 2009, Bogota,
Colombia, 10–13 November 2009, pp. 5–10. ACM Press (2009)

4. Pokharel, M., Park, J.: Cloud computing: future solution for e-Governance. In: Proceedings of
the 3rd International Conference ICEGOV 2009, Bogota, Colombia, 10–13 November 2009,
pp. 409–410. ACM Press (2009)

5. Gongolidis, E., Kalloniatis, C., Kavakli, E.: Requirements identification for migrating
eGovernment applications to the cloud. In: Linawati, Mahendra, M.S., Neuhold, E.J., Tjoa,
A.M., You, I. (eds.) ICT-EurAsia 2014. LNCS, vol. 8407, pp. 150–158. Springer, Heidelberg
(2014)

6. Microsoft: About VHD. https://msdn.microsoft.com/en-us/library/windows/desktop/dd323
654(v=vs.85).aspx

7. Hüttermann, M.: DevOps for Developers: Integrate Development and Operations, the Agile
Way. Apress, New York (2012)

76 T. Kotka et al.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd323654(v%3dvs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd323654(v%3dvs.85).aspx

	E-Government Services Migration to the Public Cloud: Experiments and Technical Findings
	Abstract
	1 Introduction
	2 Technical Experiment Design
	2.1 Migration to the Public Cloud
	2.2 Target Architecture for Public Cloud
	2.2.1 Workstream #1 – Presidentee.cloudapp.net
	2.2.2 Workstream #1 – Riigiteataja.cloudapp.net

	2.3 Performance Testing Methodology
	2.3.1 Normal Demand Usage Scenario
	2.3.2 Malicious Demand Usage Scenario

	3 Experiments and Performance
	3.1 Workstation #1 Load Test Results
	3.2 Workstation #2 Load Test Results

	4 Findings
	4.1 Security, Identity and Data Architecture Findings
	4.2 Operations Architecture Findings
	4.3 Application Architecture Findings
	4.4 Compute Architecture Findings
	4.5 Storage Architecture Findings
	4.6 Network Architecture Findings

	5 Conclusions
	Acknowledgments
	References

